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Abstract  

Static and dynamic compression experiments are very different.  In general, higher pressures 

can be obtained using dynamic compression, but with that come several advantages and 

disadvantages.  Under dynamic compression, a time-dependent pressure drive is imposed on 

the material and the response of the material is measured.  The compression is inertially 

confined and in a rigorous state of uniaxial strain.  Many sources of entropy (manifested as 

increased temperature) are present, not all of which can be controlled.  A variety of drivers 

can be used to generate dynamic compression and many specialized instruments are necessary 

to decipher the material states obtained. I will introduce some of the important concepts 

governing dynamic compression, the drivers employed, and the measurement techniques 

used. 
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I.  Dynamic Compression Fundamentals  

Several overriding assumptions are often made extensively in understanding simple dynamic-
compression experiments:  1) All material motion is one-dimensional, that is the experiment 
has planar, cylindrical, or spherical symmetry.  This assumption (intertial confinement) 
simplifies the description significantly.  2) The conservation laws of mass, momentum, and 
energy for the system hold explicitly over the duration of the experiment.  3) The initial value 
condition of the pressure drive coupled with the conservation laws produce a set of hyperbolic 
differential equations that along with the constitutive properties of the material generates a 
systematic response of the system.  4) The material remains in Local Thermal Equilibrium 
(LTE) at all times.  It is the goal of the experimentalist is to make measurements of physical 
observables to determine the material state constitutive properties. 

For general one-dimensional flow of a compressible inviscid fluid, the continuous, 
hydrodynamic equations of motion can be written in the form of three conservation laws for 
mass, momentum, and energy:1 



∂ρ
∂ t

= − ∂
∂ x

ρu( )
∂
∂ t

ρu( ) = − ∂
∂ x

ρu2 + P( )
∂E
∂ t

= − ∂
∂ x

Eu + Pu( )

     (1) 

ρ  is the local material density, u is the particle (local material) velocity, P is the pressure, and 
E is the internal (local material) energy.  These hydrodynamic governing equations form a set 
of hyperbolic partial differential equations have can be generalized for solids2 and require 
knowledge of material constitutive properties such as a P, ρ , E  equation of state (EOS) 
strength model and phase diagram, to truly describe the material response.  It is the 
determination of these constitutive properties that is the goal of most dynamic compression 
experiments.  Note that entropy and temperature do not appear in the governing equations 
because the flow is purely isentropic for inviscid continuous flow.   

In dynamic compression discussions two coordinate systems are often employed, Eulerian 
(laboratory, x-t) and Lagrangian (material, h-t).  To convert the Eulerian governing equations 
above into Lagrangian coordinates we let , where h is the spatial (material) 
Lagrangian coordinate.1  The first two governing equations can be rewritten for small waves 

in the form of the wave equation,  , where CE and CL, 

 are the isentropic Eulerian and Lagrangian sound speeds respectively.   

It is very useful to visualize a Lagrangian h-t plane where material perturbations can be drawn 
as lines.  If a sudden perturbation is initiated at (x0 ,t0), one wave will propagate to the left and 
one to the right at velocities ±CL ( , in Eulerian space). These waves comprise forward 

and backward characteristic waves with Riemann invariants,  along , 
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Fig. 1: Characteristics in Lagrangian coordinates plots showing dynamic compression of a 
nonlinear material with increasing sample thickness.  For the thinnest sample, the free surface 
reverberation reaches the drive surface during the compression stage.  For the intermediate 
sample the sample neither shocks before the free surface or reverberates to the drive surface.  For 
the thickest sample a shock forms before breakout at the free surface.  The fast initial wave in each 
sample represents the elastic response before plastic deformation where the characteristics travel 
at the faster elastic sound speed. 



where .1,3,11  J. R. Maw12 has given a very nice, simple algorithm for 

propagating characteristics for simple ramp compressions waves used for the following 
figures. 

Figure 1 shows a characteristics simulation in Lagrangian coordinates for three different 
sample thicknesses.  Since materials generally display nonlinear compressibility so that the 
sound speed increases with pressure, the wave steepens as it transits the sample.  Also shown 
in figure 1 are the characteristic response when the wave releases at the vacuum free surface.  
The interaction of the compression and release waves cause the characteristic lines to curve in 
space-time.  Finally, the effect of elastic-plastic relaxation is shown by the drop in sound 
speed after the first two characteristics due to the drop in sound speed from the elastic to the 
bulk sound speed.  Traditionally, dynamic compression experiments have relied on interface 
velocity measurements to determine the material constitutive properties.  In figure 1 it is clear 
that ramp waves generally steepen into shocks after a sufficient time and thickness.  If the 
drive reaches a final constant pressure, then a steady shock will form as the characteristics 
cross.  The first governing equation can be integrated over a shock discontinuity occuring 
between x1 and x2,  
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where ρ0,  u0  and ρ1,  u1  are the density and particle velocities immediately before and after 

the shock discontinuity.  D = ∂xs
∂t

 is the shock velocity and the integrals go to zero as 

x1 → x2  so that, ρ0D − ρ1D = − u1ρ1 − u0ρ0( ) , the mass conservation  jump equation.  Similar 
integrals can be done for the other governing equations giving the three Rankine-Hugoniot 
equations, 

ρ0 D − u0( ) = ρ D − u( )
P − P0 = ρ0 D − u0( ) u − u0( )
E − E0 =

1
2
P + P0( ) V0 −V( )

     (2) 

where V = 1 ρ .  These three equations relate the thermodynamic state variables, ρ,  P, E  to 
the dynamic variables, u and D and the very specific locus of points accessible from an initial 
state, ρ0,  P0, E0  is called the Hugoniot.  If two of these five variables are measured the other 
two can be calculated.  Traditionally, the dynamic velocities u and D have been measured and 
the state variables calculated, but recently laser-driven dynamic compression experiments 
have allowed ρ  to be measured directly by radiography, which combined with a single 
velocity measurement also closes the relations.  It is often stated that the maximum 
compression from a strong shock is limited to ρ ρ0 = 4 , this comes from the argument that 
after rewriting the energy equations as E − E0 =V 2 P + P0( ) ρ ρ0 −1( ) , substituting the ideal 

dσ = dP
ρ0CL

= ρ0CL
dρ
ρ 2



gas EOS, E = CVPV , and ignoring all terms containing P0  as small compared to a strong 
shock pressure, one finds that ρ ρ0 = 2CV +1 .  Thus, the maximum compression for a 
monatomic ideal gas with CV = 3 2  is four, while the maximum compression for a diatomic 
ideal gas is six.   

 

Fig. 2: (Taken from Davison's2 Figure 3.2)  “Schematic configuration of a plate-impact experiment.  
The projectile guides the impactor disk as it is accelerated along the launch tube (shown in cutaway 
view) by compressed gas or gun propellant.  It collides with the target disk placed slightly beyond the 
end of the tube.“ 

Absolute stress-density EOS measurement can be made using gas guns (figure 2) with a 
symmetric impact (same impactor and sample) as shown in figure 3.  After a symmetric 
impact equal and opposite shocks propagate into both the impactor and the sample.  In this 
case the experimental symmetry Rankine-Hugoniot relations both imply that the u = uimp 2  
where uimp is the impactor velocity suggests that if both uimp and the shock velocity, D, in 
either the impactor or the sample allow an absolute measurement of ρ,  P, E  on the sample 
Hugoniot.  In the case of non-symmetric impact, ρ,  P, E  can still be determined, but the 
method involves impedance matching and requires a known standard. 

 

Fig. 3: (Taken from Davison's2 Figure 3.3)  “Plate-impact test configuration (side view) and space-time 
diagrams of the interaction. The side-view figures show the relative positions of the parts, indicate 
notation, etc., but the horizontal dimension is much too great in comparison to the vertical dimension 
for the figure to be scale representations of the actual parts.“ 



While shock pressure and density can be measured absolutely by gas-gun symmetric impacts 
and by impedance matching, the temperature and entropy are much more difficult to 
constrain.   

The continuous hydrodynamic equations for compressible inviscid flow (Eq. 1) are purely 
isentropic, but any irreversible constitutive response such as plastic relaxation or shock 
discontinuities will raise the entropy, and neither the temperature or the entropy are governed 
by conservation laws along the shock Hugoniot.3 Since release from a shocked state is usually 
continuous, it is often true that shock release is isentropic.4  In general (absent any 
constitutive information) the entropy rises as the third power of the shock strength, 

 (Whitham3, ch. 6).  While streaked optical pyrometry (SOP) can be used to 
determine the temperature in transparent samples that undergo a transition to a reflective state 
on the Hugoniot,5-8 in general temperature is very difficult to measure. It has recently been 
shown that at special points on the Hugoniot the entropy can be determined by connecting the 
Hugoniot state to ambient pressure melting points,9,10 but in general the shocked entropy is 
generally calculated quantity, and methods for measuring entropy and temperature remain an 
area of great necessity. 

All high-pressure standards must be related to absolute stress-density standards like 
symmetric impact Hugoniot measurements.13  But, as the shock strength increases into the 
multi-Mbar regime the shock temperature rapidly rises to several eV and all materials melt.8  
Thus, to provide pressure standards to static experiments and to study solid phases at very 
high pressures another method of compression is needed.  Ramp compression can 
experiments fill both of these needs.  As shown in figure 1 the hydrodynamic governing 
equations allow solutions of ramp compression steepening with time and sample thickness.  If 
the pressure drive is carefully chosen then the inevitable shock in the material can be delayed 
until after the free-surface breakout.  By comparing the free-surface velocity for various 
thickness samples the sound speed can be extracted and integrated to get absolute stress-
density along relatively cold compression curves.11,12,14,15  The ease of producing a shock-less 
drive improves for stiffer materials so that a large initial bulk modulus makes higher pressures 
possible.  The two primary platforms for ramp compression EOS studies are lasers11,16-19 and 
the Z-machine15,20,21, although graded-density impactors are also used22.  Materials with no or 
low strength can follow nearly isentropic compression curves and offer excellent potential to 
extend pressure calibration of standards to much higher pressures,20 likely above 1 TPa in the 
near future23.  Finally, modifications to the ramp-compressed sample configuration has 
allowed x-ray diffraction using laser-driven compression well into the TPa regime.24-26  Of 
particular use for designing laser-driven compression experiments are several heuristic 
intensity versus pressure fits that allow pressure drives to be estimated without any need for 
complex or expensive simulation.27-29  

II.  Dynamic Compression VISAR Diagnostic 

Dynamic compression diagnostics are many, but by far the most important diagnostic to this 
discussion is the VISAR (Velocity Interferometer System for Any Reflector),30 and I will 
limit discussion of diagnostics to the VISAR.  As the name implies, the VISAR is used to 
measure the velocity of interfaces by reflecting light from the interface.  The line VISAR 
allows images the sample interface in one dimension (1-D) so that the drive planarity or 
multiple sample steps can be evaluated.31  An implementation of the line VISAR commonly 
used is shown in Figure 4.  Other useful implementations of the VISAR are the 0-D point 
VISAR32,33, and the high-resolution 2-D VISAR34-36.   

z ≡ P − P0( ) P0



I will cover the analysis for line VISAR here since it is the most widely used and valuable for 
laser-compression experiments.  This analysis was developed by Peter Celliers and this 
discussion draws heavily on his publication31 and notes.   

 

Fig. 4: The line VISAR diagnostic takes reflected laser light and runs it through a Mach-Zehnder 
interferometer.  The spatial imaging properties of the line VISAR are essential to laser-driven 
compression experiments where shock planarity needs to be evaluated or where the velocity history 
varies with the sample position.. 

The line VISAR is a high resolution optical imager that projects a two-dimensional magnified 
image of the target onto a streak camera detector ( Fig. 4).  The reflected laser-light signal 
passes through a pair of velocity interferometers before being recorded on the streak cameras. 
The interferometers superimpose a sinusoidal spatial modulation on the image: Doppler shifts 
in the reflected probe are manifested as shifts of these fringes at the interferometer outputs. 
The streak cameras record the central slit region of the field of view and sweep this signal in 
time across the output detector.  An optical delay is achieved by a combination of the 
refractive delay in the etalon and an additional translational offset of the etalon-mirror 
combination along a direction perpendicular to the mirror plane.   The translation distance, 
d = h 1−1 n( ) , is calculated to place the image of the mirror plane as viewed through the 
etalon coincident with its initially determined null position ( i.e., zero path delay with the 

etalon removed) .  The resulting optical time delay is τ = 2h
c

n −1 n( )  where h  is the etalon 

thickness, n  is the index of refraction of the etalon, and c  is the speed of light. The end 
mirror and the etalon in the delay arm of the interferometer are both mounted on a motorized 
translation stage. 

When perfectly aligned (parallel output beams) , the Mach-Zehnder interferometer has a 
uniform output intensity:  a single phase across the output. For the line-imaging application, a 
fringe comb is imposed on the output by slightly tilting the output beamsplitter, thus imposing 
a linear ramp in relative optical path difference across the output field. Doppler shifts in the 
light passing through the interferometer result in changes in the optical phase at the output, 
and these in turn appear as shifts in fringe position. The spatial frequency of this imposed 
pattern is arbitrary and is usually set to provide from 12 to 25 fringes across the output image 
(See figure 4). 



Such a velocity interferometer measures the two-point time autocorrelation function of the 
input beam. The electric field vector of the undelayed path of the beam at the output of the 
interferometer is  

 
!
E t( ) = E0 exp −iφ t( )⎡⎣ ⎤⎦      (3) 

where φ t( )  is a phase function that contains terms accounting for the Doppler shift generated 
during the experiment. The phase function is given by,  

φ t( ) = ω
−∞

t

∫ t( )dt +φr t( ) +φp      (4) 

The term φr t( )  represents the optical phase shift upon reflection at the reflecting surface, and 
φp  is a constant phase offset related to details of the fixed path in the interferometer, resulting 
for example from a slight tilt in the beam splitter to produce a spatially varying fringe comb at 
the output. The frequency of the reflected probe laser ω(t) contains a (non- relativistic) 
Doppler shift so that 

ω t( ) =ω 0t
1+ u t( ) c
1− u t( ) c ≈ω 0t 1+ 2u t( ) c( )   

where u t( )  is the velocity of the free surface.  

The interference pattern is produced when the illumination beam is split, and recombined  
with a copy of itself delayed by time τ, i.e. from the interference of the field  

!
E t( ) with 
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The argument of the exponential term represents the phase of the interferogram, and is time 
dependent through its dependence on Δω t( )  The total phase is the observable in the 
experiment,  

φV t( ) = 2ω 0 1+δ( )
c

Δω t( )dt +ω 0τ + Δφ
t−τ

t

∫    (6) 

where Δφ = φr t( ) +φr t −τ( ) +φp1 −φp2  is constant over time scales t > τ .  Also introduced 
here is a correction factor 1+δ( )  which accounts for an additional phase shift that is caused 
by dispersion in the glass delay etalon. The dispersion in the delay etalon causes the Doppler 
shifted light to encounter a slightly different delay τ than unshifted light.  While this slight 
change in the value of τ is negligible for experimental timing, it is significant compared to a 
single optical period, and thus is measureable with the interferometer, and results in an extra 
amount of observable phase relative to what one would observed with a dispersionless delay 
element (δ = 0.0315 at 532 nm in a fused silica etalon).   

The integral in the first term of Eq. 6 can be interpreted formally as representing a moving 
average of the velocity over the etalon delay time τ, and centered at time t −τ 2 .  

 φV t( ) = 2ω 0τ 1+δ( )
c

u t −τ 2( )
τ
+ const    (7) 

or equivalently (dropping the constant phase offset),  

u t( )
τ
= λ
2τ 1+δ( )

φV t +τ 2( )
2π

     (8) 

the constant λ
2τ 1+δ( )  defines the velocity per fringe (VPF) for the VISAR.  This sensitivity 



formula applies for Doppler shifts observed from free surfaces moving in vacuum. For many 
experiments this situation is not the case, and additional corrections must be factored in 
depending on details of the experiment.  Hayes37 has shown that for a complex windowed 
target system Eq. 8 is equivalent to ua t( ) = dZ dt  where ua is the apparent velocity denoted 
in Eq. 8 and Z is the total optical thickness between the reflecting surface and the 
interferometer beam splitter (in general, the only time-dependent path lengths are within the 
driven portion of the target).  If the reflecting surface probed is a single reflecting shock, then 
the actual velocity, uA, and the apparent velocity, ua, are related by uA = ua n0 , where n0 is the 
refractive index of the initial state.  Hayes37 also showed that if the refractive index of a 
compressed window can be written as n ρ( ) = a + bρ  then uA = ua a  independent of the time 
or position dependence of the compression wave.  Since the refractive index of many sample 
windows can be fit relatively well to n ρ( ) = a + bρ  it is often assumed that the VISAR 
apparent velocity and the actual velocity are proportional to each other.  In these special cases 

it is often assumed that uA t( ) =VPFA
φV t +τ 2( )

2π
 where VPFA =

λ
2τ 1+δ( )n*  where n* is n0 

for a reflecting shock, or a for a transparent window with an index defined by n ρ( ) = a + bρ .  
The relationship between the actual and apparent VISAR velocities enable several very clever 
methods of determining the refractive index of materials at high density and or temperature.37-

42 
Conclusions 

I have tried to give a brief introduction to the basics of dynamic compression experiments, 
distinguishing shock and ramp compression experiments.  Of particular importance to making 
quantitative measurements is the VISAR diagnostic and I have also introduced the basic 
concepts behind the diagnostic. 
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